Q12: The moment of inertia of a uniform cylinder of length and radius R about its perpendicular bisector is I. What is the ratio /R such that the moment of inertia is minimum?

- (a) 1
- (b) $3\sqrt{2}$
- (c) $\sqrt{3}/2$
- $(d)\sqrt{3/2}$

Solution

Moment of Inertia I = $m[I^2/12 + R^2/4]$

Volume = $\pi R^2 I$

Writing Moment of inertia in terms of volume, we get

 $I = m/4(V/\pi I + I^2/3)$

Differentiating the above equation we get

 $dI/dI = m/4 (-V/\pi I^2 + 2I/3)$

For maxima and minima, dI/d/= 0

So m/4 $(-V/\pi I^2 + 2I/3) = 0$

 $V/\pi I^2 = 2I/3$

 $R^2/I = 2I/3$ (Volume = πR^2I)

 $I^2/R^2 = 3/2$

$$l/R=\sqrt{rac{3}{2}}$$

Answer: (d) $\sqrt{3/2}$